
〈bra| und |ket〉 und Schrödingers Katze 

Teil 1: Formalismus der Quantenphysik 

von Seejay 

Das Jahr der Quantenphysik. Vor hundert Jahren, also 1925, entwarf Werner Heisenberg die 
Grundlagen der Quantentheorie (Jeden Sommer im Urlaub komme ich auf Helgoland an dem 
zugehörigen Gedenkstein vorbei). In PR 3334 hat Rüdiger Vaas sogar einen PR-Report 
diesem Jubiläum gewidmet. Ich dachte mir: Sollte nicht auch das WoC dieses Event würdig 
begehen? In unserer Lieblings-SF-Serie begeistert viele das Element des „sense of wonder“, 
die Anmutung von etwas Wunderbarem. Andere beschweren sich gar, wenn sie es vermissen. 
Quantenphysik leistet genau das: die Anmutung von Wunder. Was sie ebenso mit 
Hyperphysik gemeinsam hat wie die Tatsache, dass niemand sie wirklich versteht. Also, dies 
geht an die Kalups und Waringers unter euch (Ja, war’n Witz). Wie schon Niels Bohr 
sinngemäß bemerkte: Um das zu verstehen, muss einem schwindelig sein.  

Mathematisch funktioniert Quantenphysik hervorragend. Die rechnerischen Vorhersagen sind 
perfekt, man darf nur nicht fragen, was dahintersteckt: „Shut up and calculate!“, Halt’s Maul 
und rechne – ein Zitat, das zu Richard Feynman passt, allerdings behauptet David Mermin, er 
wisse nicht mehr, ob er den Spruch selbst in die Welt gesetzt oder von Feynman geklaut habe. 

Ich finde es höchst spannend, welche gedanklichen Klimmzüge und Verrenkungen schon 
angestellt wurden, um zu erklären, was hinter der Quantenphysik steckt. Praktischerweise 
hatte ich mal das Vergnügen, über das Buch „Conscious mind in the physical world“ von 
Euan Squires zu referieren, in dem es genau darum geht. Jüngst fiel mir das Manuskript 
wieder in die Hände. Es ist gespickt mit Differentialgleichungen, und ich habe drei Wochen 
gebraucht, um es wieder zu kapieren. Das tue ich euch natürlich nicht an. Aber ein bisschen 
schwindelig darf einem schon gern werden. Und deswegen gibt es trotzdem etwas 
Formelkram. Keine Panik, ich breche es auf die Mathematik eines Billig-Taschenrechners 
herunter: Nur Grundrechenarten. Wer Sudokus oder KenKens löst, dürfte auch damit keine 
Schwierigkeiten haben. Wem das auch noch zuviel ist, der kann die Rechnungen auch 
glauben und blättere weiter, bis wieder Prosa kommt. Also, bringen wir’s hinter uns: 

Achtung, Mathe! 

Für die Berechnungen, die ich euch zumuten (oder zumindest vorstellen) möchte, braucht ihr 
vor allem eins: die Multiplikation von Matrizen. Eine Matrix (nein, nicht die aus dem Kino) 
ist ein rechteckiges Zahlenschema. Also sowas wie ein Sudoku. Im Gegensatz dazu kann man 
Matrizen aber miteinander malnehmen. Man kann sie auch addieren und subtrahieren, aber 
das brauchen nicht mal. 

Man multipliziert Matrizen, indem man die Elemente einer Zeile mit denen einer Spalte 
malnimmt und die Ergebnisse addiert. Im einfachsten Fall ist es nur eine Zeile (ein so 
genannter „Zeilenvektor“) und eine Spalte („Spaltenvektor“). Rechnet die Zahlenbeispiele 
mit, dann wird klar, wie es funktioniert. Andernfalls nehmt den Notausgang.  

 

War’s schlimm? Hey, ich habe nicht gesagt, dass es Lustgefühle auslöst – aber es sollte sich 
verstehen lassen. Okay, dann kann’s ja jetzt losgehen. Folgt mir in den Kaninchenbau! 

Die Schrödinger-Gleichung 

Dies ist die Weltformel der Quantenphysik. Benannt ist sie nach Erwin Schrödinger (der auch 
der Namensgeber für die im Titel erwähnte Katze ist, auf die ich später noch komme), und sie 



lautet kurz: E Ψ = H Ψ. Darin sind E und H Operatoren. Operatoren? Ein Operator ist in der 
Mathematik ein hungriges Biest, das sich auf einen mathematischen Term stürzt, sobald es 
seiner habhaft wird, ihn frisst und dann einen neuen Term ausspuckt. Ein Beispiel aus dem 
Alltag (na ja) ist der Wurzeloperator: √. Für sich allein ist er nutzlos, gebe man ihm aber ein 
Opfer, sagen wir eine 25, dann verschlingt er sie und macht eine 5 daraus: √25 = 5. 

Im obigen ist E der „Energie-Operator“ und H der „Hamilton-Operator“. Dieser ist wiederum 
die Summe aus dem Operator T für die kinetische Energie (Bewegungsenergie) und V für die 
potentielle Energie (also praktisch das Kraftfeld, in dem sich das Objekt bewegt): H = T + V. 
Die ganze Aufgabe besteht darin, für ein gegebenes Kraftfeld V die Lösungen Ψ (Psi) der 
Gleichung zu berechnen. Ψ ist die „Zustandsfunktion“ und damit die mathematische 
Repräsentation des gerade betrachteten Quantenobjektes (Photon, Elektron, Atom, Molekül, 
Katze, Universum). Das ist nicht trivial; sobald der Verlauf des Kraftfeldes V einigermaßen 
anspruchsvoll ist, braucht man eine Menge Computer-Power, um die Lösungen zu finden. 

Wenn man die Operatoren in der Schrödinger-Gleichung ausschreibt, sieht es furchtbar aus, 
deshalb lasse ich es bleiben. Soviel sei verraten: Es kommt darin h (Planck’sche Konstante) 
vor, woran man erkennt, dass es sich um Quantenphysik handelt. Und es kommt i = √-1 darin 
vor, was darauf hindeutet, dass komplexe Zahlen eine Rolle spielen. 

Aber ich will mit euch keine Atome berechnen. Um euch das Wesen der Quantenphysik zu 
erläutern, beschränke ich mich auf ganz einfache Dinge wie Elektronen oder Photonen. Ich 
übergehe auch die langen Ausführungen darüber, warum Licht aus Photonen besteht, das ist 
schon tausendmal erklärt worden; zumindest habt ihr euch schon längst daran gewöhnt. Und 
ich möchte euch die Wunder der Quantenphysik entfalten und nicht Gemeinplätze 
wiederholen, die auf jeder Semmeltüte stehen. 

Also: Solange sich so ein Quantenobjekt fern von Kraftfeldern und anderen Widrigkeiten frei 
bewegt, kann man seine Zustandsfunktion Ψ mit etwas gutem Willen grafisch darstellen: Als 
komplexe Funktion ist sie zweidimensional (x- und y-Achse), d.h. sie hat einen Realteil (Re) 
und einen Imaginärteil (Im) und erfordert dafür schon einmal eine ganze Fläche („komplexe 
Ebene“). Bleibt noch eine Dimension für die z-Achse übrig, das ist die Bewegungsrichtung 
des Objektes. Ein Elektron oder Photon, das sich in z-Richtung bewegt, sieht dann zu einem 
bestimmten Zeitpunkt etwa so aus wie in Bild 1: 

 

Linkes Bild: in voller Schönheit; mittleres Bild: Imaginärteil und Realteil einzeln (was 
Seitenansicht und Draufsicht des linken Bildes ist); rechtes Bild: Das „Betragsquadrat“ von 
Ψ. Ihr erkennt, dass das Ganze im weitesten Sinne eine Art Welle – präziser: ein 
„Wellenpaket“ – ist; und seine größte Schwingungsweite hat es dort, wo sich das Objekt 
vermutlich in etwa vielleicht so ungefähr befindet. Das Ganze sieht so ähnlich aus wie eine 
rotierende Matratzenfeder, denn die Schwingungen von Re(Ψ) und Im(Ψ) setzen sich zu 
einem um die z-Achse rotierenden Pfeil zusammen. Der Betrag |Ψ| ist die Länge des Pfeils. 
Und das Betragsquadrat |Ψ|² (also die Länge des Pfeils mal sich selbst) ist das Einzige, das 



tatsächlich eine physikalische Bedeutung hat: Es ist die Wahrscheinlichkeit dafür, das Ding 
bei einer Messung zur Zeit t am Ort z anzutreffen. Alles andere ist nur ein (immerhin perfekt 
funktionierendes) mathematisches Modell. Und daher rotiert da in Wirklichkeit auch gar 
nichts (was auch immer Wirklichkeit sein mag), das stellt man sich nur so vor. 

Die Besonderheit eines Quantenobjekts besteht also darin, dass es sich zu einer bestimmten 
Zeit eben nicht an einem bestimmten Ort befindet, sondern nur eine gewisse 
Wahrscheinlichkeit besteht, es dort zu finden. Diese Wahrscheinlichkeit lässt sich dann 
allerdings genau berechnen: |Ψ|². Die Schrödinger-Gleichung ist „deterministisch“, d.h. wenn 
man den Verlauf von Ψ zu einem bestimmten Zeitpunkt kennt, kann man den Verlauf zu 
jedem früheren oder späteren Zeitpunkt daraus berechnen ... bis man dem Objekt irgendwas in 
den Weg stellt, in das es reinknallt, z.B. bei Licht eine Fotoplatte. Ich bin da etwas 
altmodisch, heute nimmt man einen CCD-Sensor oder sowas, aber die gute alte Fotoplatte ist 
anschaulicher: Sie wird dort, wo das Photon reinknallt, geschwärzt. Und damit hat man 
plötzlich statt einer Wahrscheinlichkeit einen präzisen Ort. Das Wellenpaket ist dadurch 
allerdings zerstört worden. Und die ganze Krux der Quantenphysik ist, dass sie kein 
Werkzeug kennt, diesen Übergang vom Möglichen ins Faktische (die so genannte 
„Reduktion“ oder brutaler ausgedrückt: den „Kollaps“ der Zustandsfunktion) zu berechnen 
oder zu beschreiben. Davon handelt der ganze Rest. 

Polarisiertes Licht 

Zur Erläuterung dessen, was ich euch zeigen möchte, genügt es weitgehend, sich auf 
Lichtquanten (Photonen) zu beschränken, und dort auf die eine und einzige Eigenschaft der 
„Polarisation“. Fotografen kennen Polarisationsfilter, man benutzt sie, um störende 
Spiegelungen auszublenden. Auch manche Sonnenbrillen enthalten Polarisationsfilter. Sie 
lassen nur Licht durch, das in einer bestimmten Ebene schwingt, der Polarisationsrichtung. Da 
bei einer Reflexion das Licht ebenfalls polarisiert wird, kann man das reflektierte Licht mit 
einem Filter unterdrücken, das genau quer zu dieser Richtung steht.  

Die Zustandsfunktion eines Lichtquants (unter Vernachlässigung aller anderen Eigenschaften 
wie z.B. der Farbe) ist dann ein Pfeil, der – quer zur Ausbreitungsrichtung z – die 
Polarisationsrichtung angibt. Also etwa so wie in Bild 2.  

 

Achtung: Das ist nicht der rotierende Pfeil aus Bild 1. Dieser hier bedeutet eine konkrete 
Richtung im konkreten Raum, und auf den Polarisationsfiltern für Kameras ist diese Richtung 
mit einem kleinen Pfeil am Rand sogar markiert.  

Der Zustand „waagerecht polarisiert“ wird durch die Zustandsfunktion |w〉 beschrieben, der 
Zustand „senkrecht polarisiert“ durch die Zustandsfunktion |s〉, Bild 2 links. Zu den 



merkwürdigen spitzen Klammern komme ich gleich. Die Pfeile sind im mathematischen 
Sinne „Vektoren“ (Tatsächlich sind auch die Ψ-Funktionen in der Schrödinger-Gleichung – in 
einem sehr verallgemeinerten Sinn – Vektoren). Man beschreibt sie durch zwei Zahlen, die 
ihren waagerechten und ihren senkrechten Anteil darstellen. |w〉 hat also den waagerechten 
Anteil 1 und den senkrechten Anteil 0, und umgekehrt bei |s〉. Das wird deutlicher, wenn wir 
schräg polarisiertes Licht |v〉 betrachten (Bild 2 rechts). Warum heißt das Ding |v〉? Na ja, 
irgendwie muss es ja heißen. Das ist wie mit den Namen von Aliens in SF-Romanen. Es 
reicht, wenn der Autor sich etwas dabei gedacht hat. Oder auch nicht. Das schräg polarisierte 
Licht |v〉 im Beispiel kann man sich aus 0,8 Anteilen waagerecht und 0,6 Anteilen senkrecht 
polarisierten Lichtes zusammengesetzt denken. Formal: 

|v〉 = 0,8 · |w〉 + 0,6 · |s〉. 

Es gibt natürlich auch andere schräge Polarisationsrichtungen. Ich nehme diese hier als 
Beispiel, weil die Zahlen nicht allzu krumm sind. Ein genau diagonal unter 45° polarisiertes 
Quant sähe so aus: 

|d〉 = √½ · |w〉 + √½ · |s〉 . 

Aber Wurzeln sind keine Grundrechenarten, also Ihh-Bäh. Folglich versuche ich sie zu 
vermeiden, seid ihr da bei mir? (Jetzt sagt ihr vielleicht, was denkt der von uns? Nur das 
Beste, aber ich habe da schlechte Erfahrungen, außerdem hab ich’s versprochen.) 

So, und was sollen also diese komischen spitzen Klammern? Nun, das ist eine auf Paul Dirac 
zurückgehende Schreibweise für Zustandsfunktionen. In der Schrödinger-Gleichung hätte 
danach statt Ψ auch |Ψ〉 stehen können, ich wollte euch nur nicht gleich erschrecken. Der 
Hintergrund ist, dass man Vektoren miteinander multiplizieren kann, allerdings kann man nur 
einen Zeilenvektor mit einem Spaltenvektor multiplizieren, wie weiter oben erläutert. 

Dirac hat für Spaltenvektoren diese Schreibweise |a〉 eingeführt und schreibt zur 
Unterscheidung den entsprechenden Zeilenvektor als 〈a|. Beim Multiplizieren steht dann links 
eine spitze Klammer auf und rechts eine spitze Klammer zu, zum Beispiel 〈a| · |b〉, abgekürzt 
auch 〈a|b〉. Da eine Klammer auf Englisch „Bracket“ heißt, hat sich Dirac den Scherz erlaubt, 
das 〈a| als einen Bra-Vektor und das |b〉 als einen Ket-Vektor zu bezeichnen. Vielleicht, weil 
ihn der Hintersinn Bra = Büstenhalter amüsiert hat. 〈O|O〉 sieht ja in der Tat ein bisschen aus 
wie ... damals war eben noch nicht alles politisch korrekt und #metoo gab’s auch noch nicht. 

Was macht man nun mit diesem Produkt? Wenden wir es auf das schräg polarisierte Licht |v〉 
an, so erhalten wir  

 

Und das ist das Betragsquadrat des Vektorpfeils, was nichts anderes ist als der Satz von 
Pythagoras in Bild 2 (rechts). Für |w〉 oder |s〉 dürft ihr es selbst nachrechnen. Das gilt 
übrigens auch für Schrödingers Ψ: 〈Ψ|Ψ〉 = |Ψ|², aber das nur am Rande. 

Dinge, die man messen kann, heißen in der Quantenphysik „Observable“. Zu einer Messung 
gehört in der Welt der Quanten ein Operator, den man auf die Zustandfunktion anwendet, um 
ein Messergebnis zu produzieren. In unserer Welt der Vektoren ist ein Operator eine Matrix. 
Zum Beispiel misst man die senkrechte Polarisation von Licht mit einem senkrecht 
eingestellten Polarisationsfilter, und dazu gehört der Operator 

 

Wenn man ihn auf unser schräg polarisiertes Licht |v〉 loslässt, passiert folgendes: 



 

Das senkrechte Polarisationsfilter erzeugt, wer hätte das gedacht, senkrecht polarisiertes 
Licht. Allerdings bleibt von |v〉 nur dessen senkrechter Anteil übrig. Das eigentliche 
Messergebnis ist die Lichtintensität, die dabei zu erwarten ist, genannt der „Erwartungswert“ 
der Messung S, und geschrieben 〈S〉. Achtung, man rechnet von rechts nach links: 

 

Es sind demnach 36% der ursprünglichen Lichtintensität zu erwarten – oder anders: für ein 
einzelnes Photon des Zustandes |v〉 beträgt die Wahrscheinlichkeit 36%, dass es durch das 
Filter hindurchkommt. Danach befindet es sich allerdings im Zustand |s〉, d.h. die Messung hat 
den Zustand verändert. Das ist ein wesentliches Charakteristikum der Quantenphysik. Die 
Messung verändert das Messobjekt und erzeugt („präpariert“) einen neuen Zustand. Merken! 

Die Unbestimmtheitsrelation 

Sie geht auf Werner Heisenberg zurück und ist auch als „Unschärferelation“ bekannt. Die 
Änderung des Messobjektes durch die Messung macht es bei manchen Eigenschaften 
unmöglich, sie simultan zu messen (Paradebeispiel: Ort q und Impuls p. Wenn euch „Impuls“ 
nichts sagt, denkt statt dessen an eine Geschwindigkeit, das trifft es nicht perfekt, aber zur Not 
geht’s damit auch). Die erste Messung zerstört die zweite Messgröße, d.h. man bekommt dann 
zwar einen Wert, aber das ist nicht mehr der, den man wissen wollte. Die Messungen sind 
„nicht kommutativ“ (lat. commutare = vertauschen). Ihr seid es natürlich gewohnt, dass 3 + 5 
das Gleiche ist wie 5 + 3. Wäre es anders, müsste man ja im Supermarkt genau darüber 
nachdenken, in welcher Reihenfolge man die Waren aufs Kassenband legt, damit der Einkauf 
nicht zu teuer wird. 

Quantenmessungen sind aber Matrizen. Die senkrechte Polarisation misst man mit 

 

Senkrecht polarisiertes Licht wird dadurch nicht verändert: 

 

Man sagt, |s〉 ist ein „Eigenzustand“ von S. Man kann ein Polarisationsfilter auch schräg 
einstellen, sodass das Licht |v〉 unverändert passieren kann. Nennen wir den zugehörigen 
Operator V, so wäre 

V |v〉 = |v〉 . 

Ich erspare euch die Rechnung. Nur für den unwahrscheinlichen Fall, dass doch jemand 
nachrechnen möchte: Es ist 

 

Misst man erst mit V und dann mit S (man schreibt die Operatoren von rechts nach links, also 
was direkt an |v〉 steht, wird zuerst auf |v〉 angewendet), so würde man rechnen S V |v〉 und 
erhielte 

S V |v〉 = 0,6 · |s〉 . 

Misst man erst mit S und dann mit V, so folgt: 



V S |v〉 = 0,36 · |v〉 . 

Kurz und gut, V S ist etwas Anderes als S V. Die Differenz S V – V S ist also nicht 0. Ist ja 
auch logisch; wenn man erst mit V und dann mit S misst, erhält man am Ende Licht in 
Richtung von |s〉, da aus einem senkrechten Polarisationsfilter nun mal senkrecht polarisiertes 
Licht rauskommt. Misst man dagegen erst mit S und dann mit V, dann erhält man am Ende 
Licht in Richtung von |v〉. 

Quanten-Nerds kürzen S V – V S mit [S,V] ab und nennen es den „Kommutator von S und 
V“. Mittels Matrixmultiplikation kann man [S,V] direkt ausrechnen (muss man aber nicht): 

 

Wenn der Kommutator zweier Operatoren nicht 0 ist, so wie hier, dann sind die beiden 
zugehörigen Observablen nicht simultan messbar. Ist hingegen der Kommutator 0, dann ist 
die Reihenfolge der Messungen egal, die Observablen sind simultan messbar. Ein Beispiel: 
Der Operator 

 

winkt jedes Lichtquant durch und misst daher eigentlich nur dessen Anwesenheit. Für den 
Kommutator mit S erhält man: 

 

Man kann also I und S in beliebiger Reihenfolge anwenden, die eine Messung stört die andere 
nicht. In der „richtigen“ Quantenphysik formulierte Max Born eine Variante von Heisenbergs 
Unbestimmtheitsrelation als [p,q] = pq – qp ≠ 0. Hey, das steht sogar im PR-Report in Heft 
3334. (Da steht sogar, was statt dessen rauskommt, nämlich h/2πi, aber das muss euch nicht 
belasten.) In Worten: Impuls und Ort kann man nicht simultan messen. 

Wenn ihr euch noch mal Bild 1 anseht, bekommt ihr eine Ahnung, was das bedeutet. Der Ort 
des Quantenobjektes ist irgendwo da, wo |Ψ|² nennenswert von 0 abweicht, denn das ist ja die 
Wahrscheinlichkeit, das Ding dort zu treffen. Die Frequenz f (Schwingungen pro Sekunde) 
der Schwingung von Ψ hängt mit dem Impuls p zusammen, bei Licht ist er zum Beispiel 
p = f · h/c, Frequenz mal Planck-Konstante durch Lichtgeschwindigkeit. Nun kann man bei 
einem so komprimierten Wellenpaket wie in Bild 1 schlecht die Schwingungen pro Sekunde 
zählen. Das ist, wie wenn ihr eure Pulsfrequenz (Schläge pro Minute) zählen wollt. Eine 
Sekunde lang zählen und das Ergebnis mal 60 nehmen wird bestimmt keine 
Präzisionsmessung. 15 Sekunden zählen und dann mal 4 wird schon genauer. Noch besser 
zählt man eine Minute lang. Ebenso wird bei dem kurzen Wellenpaket die Frequenzmessung 
(= Impulsmessung) ungenau. Um sie genauer zu machen, müsste das Wellenpaket länger sein. 
Dann aber zieht sich auch |Ψ|² in die Länge und die Ortsbestimmung wird ungenauer. Beides 
zugleich kann man nicht haben.  

Der Kollaps der Zustandsfunktion 

Durch einen Kalkspat-Kristall (chemisch Kalziumkarbonat CaCO3) hindurch sieht man ein 
Doppelbild, der Effekt heißt daher Doppelbrechung (Bild 3 links). Ein Lichtstrahl wird in dem 
Kristall (KS) in einen „ordentlichen“ Strahl o (im Bild mit waagerechter Polarisation) und 
einen „außerordentlichen“ Strahl a (mit senkrechter Polarisation) aufgespalten (Bild 3 rechts). 



 

Ein Lichtquant des Zustandes |w〉 kommt dann hinter dem Kristall bei o heraus und hinterlässt 
eine Schwärzung unten auf der Fotoplatte (die im Bild ganz rechts steht). Ein Lichtquant des 
Zustandes |s〉 kommt bei a heraus und hinterlässt eine Schwärzung oben auf der Fotoplatte. 
Da der Kristall nur diese beiden Zustände produzieren kann, sind sie seine Eigenzustände.  
Er wirkt im oberen Weg wie ein senkrechtes Polarisationsfilter  

 
und im unteren wie ein waagerechtes Polarisationsfilter  

 
Wie aber, wenn ein einzelnes Lichtquant des Zustandes |v〉 in den Kristall eintritt? Jetzt wird 
es spannend. Man erinnert sich, dass 

|v〉 = 0,8 · |w〉 + 0,6 · |s〉 

war. Hinter dem Kristall müsste der Anteil 0,8 · |w〉 unten und der Anteil 0,6 · |s〉 oben 
herauskommen. Das Lichtquant kann sich aber nicht aufteilen, es muss entweder oben oder 
unten in die Fotoplatte einschlagen. Die Aussage der Quantenphysik ist, dass es mit der 
Wahrscheinlichkeit (glauben oder nachrechnen ☺ !) 

  

(also 64 %) unten auf die Platte trifft, und mit 

  

(also 36 %) oben. Dass 0,64 + 0,36 = 1 ist, spiegelt die Tatsache wider, dass das Quant nicht 
verloren geht. Die Summe der Wahrscheinlichkeiten, es irgendwo wiederzufinden, ist 1 oder 
100 %. Der Kristall erzeugt also aus einem beliebigen Zustand einen seiner Eigenzustände. 
Der Übergang vom Zustand |v〉 in einen der Zustände |w〉 oder |s〉 ist der schon erwähnte 
„Kollaps der Zustandsfunktion“. Er findet irgendwie außerhalb der Quantenphysik statt, denn 
diese ist deterministisch, während der Kollaps probabilistisch (= zufallsbestimmt) ist. Die 
Quantenphysik lässt sich an keiner Stelle darüber aus, 

– wo das passiert, 
– wie das passiert, 
– ob es überhaupt passiert.  

Ein zusätzliches Element scheint erforderlich zu sein, das nicht Bestandteil der 
Quantenphysik ist. Darum geht es in der nächsten Folge. Ach ja, und noch ’ne Warnung: Ich 
entfalte euch hier meine persönliche Sichtweise. Gerade, wo es ans Interpretieren geht, endet 
die Objektivität. Und ich werde viel interpretieren. 



 


